Гибкий график
учитесь онлайн в любое удобное время
Личный куратор
будет на связи 7 дней в неделю и ответит на все вопросы
Помощь с трудоустройством
поможем найти работу или вернём деньги за курс — это зафиксировано в договоре

Профессия
Data Scientist с нуля

Удостоверение о повышении квалификации
вы получите официальный документ гособразца по окончании обучения
и это зафиксировано в договоре
Поможем найти работу или вернем деньги за обучение
-0%
до
  • Освоите IT-профессию, которую точно не заменит ИИ — без опыта в программировании
  • Изучите с нуля анализ данных и машинное обучение
  • Начнёте работать удалённо через 9 месяцев обучения
  • Будете зарабатывать в среднем от 180 000 рублей в месяц
  • Сможете работать как с российскими, так и с зарубежными компаниями и получать зарплату в валюте
Кто такой Data Scientist?
Data Scientist — это IT-специалист, который занимается обработкой и анализом больших объемов информации и данных (Big Data). Он находит неочевидные закономерности в них, использует технологии искусственного интеллекта и создает модели машинного обучения для решения задач в разных сферах.
Специалист по Data Science может:
· Предсказать, окупится ли новый бизнес-проект
· Создать рекомендательную систему для сервиса с фильмами и сериалами
· Разработать модель машинного обучения для банковского скоринга, на основании которого принимается решение о выдаче кредита клиенту
Бизнес, финансы, ритейл, киберспорт, образование, медицина — сейчас любая отрасль работает с постоянно растущими объемами данных и информации, которые необходимо анализировать и делать это точнее и быстрее, поэтому сейчас без специалиста по Data Science не может существовать ни одна серьезная организация.
· Улучшить системы рекомендаций в соцсетях и интернет-магазинах

Результаты работы Data Scientist`ов окружают вас повсюду в повседневной жизни

А еще специалисты по Data Science незаменимы в науке, медицине и создании передовых технологий: например, дата-сайенисты из Google AI создали модель для распознавания кожных болезней, которая может диагностировать 26 болезней кожи с точностью 97%, в том числе рак кожи на ранних стадиях развития.
Приложения для заказа такси
прогнозируют время подачи автомобиля клиенту и стоимость поездки и строят оптимальный маршрут с помощью методов машинного обучения
Музыкальные сервисы
подбирают музыкальные треки по вашим предпочтениям с помощью рекомендательных моделей машинного обучения
Социальные сети
рекомендуют друзей, формируют вашу новостную ленту и настраивают таргетированную рекламу по вашим интересам с помощью методов машинного обучения

Почему вам стоит освоить профессию Data Scientist?

Ее можно освоить с нуля — без технического или математического образования и опыта в IT
Дата-сайентисты в среднем зарабатывают больше, чем программисты и другие айтишники — около 185 000 рублей
Дата-сайентисты нужны во всех сферах: от ритейла и маркетинга до медицины и космонавтики
Дата-сайентисты участвуют в создании и используют в своей работе инновационные технологии: искусственный интеллект, Big Data, нейросети
Это одна из самых востребованных IT-профессий: вакансий в Data Science за последние 3 года стало больше на 433%
Дата-сайентисты могут работать удалённо с российскими и зарубежными компаниями и получать зарплату в валюте

185 000 рублей — средняя зарплата специалистов по Data Science в 2024 году

Без опыта
2 года опыта
3 года опыта
5 лет опыта
112 000₽
215 000₽
350 000₽
396 000₽+

Сотни компаний в России и за рубежом ищут дата-сайентистов

Junior Data Scientist
от 1 500 $ на руки
Санкт-Петербург
Без опыта
Data Scientist
70 000 — 150 000 до вычета налогов
Екатеринбург
Опыт от 1 года до 3 лет
Data Scientist
250 000 — 300 000 до вычета налогов
Москва
Опыт от 3 до 6 лет
Data Scientist / Аналитик риск-моделей
120 000 — 300 000 ₽ на руки
Опыт от 1 года до 3 лет
Москва,
Сходненская
Data Scientist
от 350 000 до вычета налогов
Опыт от 3 до 6 лет
Москва,
Алексеевская
Data Scientist (middle/senior)
от 450 000 до вычета налогов
Опыт от 3 до 6 лет
Москва
78%
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Мы поможем вам найти работу или вернем деньги за курс

Покажем сайты с вакансиями, которых нет на hh.ru

Вы составите резюме и оформите портфолио

Трудоустроенных выпускников

Отправим ваше резюме в компании-партнеры

Поддержим во время поиска работы и проведем индивидуальные консультации

Вы узнаете, где и как искать работу, чем отличается найм в России и за рубежом, что влияет на карьерный трек аналитика данных и как составить личный план развития.
Вместе с отделом HR подготовите резюме с учетом специфики IT-индустрии, поймете, что включить в портфолио, даже если нет релевантного опыта, и разместите его на интернет-ресурсах (например, на GitHub).
По окончании курса мы отправим ваше резюме в компании, чьих сотрудников обучаем с 2013 года: «Сбер», «М.Видео», МТС и другие.
Вы выберите подходящие вакансии по нашим рекомендациям и получите обратную связь по собеседованиям.
Найдете работу или вернете деньги за обучение по программе «‎Содействие в трудоустройстве».

Вы пройдете технические собеседования с помощью симулятора и получите фидбэк от экспертов курса

Разберем основные вопросы и типичные тестовые задания. Расскажем о приемах, которые используют HR-менеджеры, и научим, как проходить интервью.

1

2

3

4

5

и это зафиксировано в договоре

Успейте записаться на курс со скидкой и начните работать дата-сайентистом уже через 9 месяцев
-0%
до

Вы освоите ключевые навыки дата-сайентиста. Вы научитесь:

Автоматизировать процесс анализа данных с помощью Python
Строить и обучать модели машинного обучения
Применять модели машинного обучения для решения бизнес-задач

Мы проанализировали сотни вакансий на рынке и точно знаем, какие знания и навыки нужны работодателям

Работать в команде по Agile и презентовать результаты своей работы
Прогнозировать и выявлять скрытые закономерности с помощью ML-моделей
Собирать информацию с помощью SQL-запросов к базам данных

Вы отработаете все навыки и знания на практике: решите 11 бизнес-кейсов

Вы предскажете, рискованно ли выдавать кредит соискателю на основе его пола, возраста, кредитной нагрузки и других данных.
Вы решите задачу кредитного скоринга на примере базы данных компании German Credit Data.
Вы классифицируете вина на основе их химических характеристик. Вместе с экспертом вы разберете, как отбирать признаки для классификации, обучать модель классификации и оценивать ее качество.
Вы решите задачу классификации на примере базы данных компании Wine.
Вы найдете факторы, влияющие на рост или падение стоимости жилья. отработаете навыки подготовки данных, обучения моделей и интерпретации их результатов.
Вы проанализируете базу данных с ценами домов в Калифорнии.

Вы будете учиться у экспертов-практиков, которые доступно объясняют материал

Олег Сидоршин
Наталия Титова
Алексей Подкидышев
Ex-ML Engineer в Yandex, Retail Group и Тинькофф
Никита Лалиев
Senior Data Scientist в ServiceNow
7+ лет опыта в Data Science
Ex-Senior Data Scientist в Microsoft и в QIWI
Эльвира Асташкина
Александр Ермоленко
Александр Сенин
Юлдуз Фаттахова

Георгий Смирнов
Даниил Гафни
Middle Data Scientist в отделе развития искусственного интеллекта Сбера
ML Engineer в Microsoft Edge Shopping
Преподает технологии хранения и обработки больших объемов данных в СПбГУ
4+ года опыта в Machine Learning
Senior Data Scientist в Лаборатории машинного обучения Альфа-Банка
3+ года опыта в Machine Learning
Ex-Data Scientist в ML Laboratory, еx-Software Engineer в Deutsche Bank
Marketing Data Scientist в CleverDATA
Преподаватель Machine Learning в НИУ ВШЭ
6+ лет опыта в Machine Learning
Middle Data Scientist в Лаборатории машинного обучения Альфа-Банка
4+ года опыта в Machine Learning
3+ года опыта в Machine Learning
Анастасия Семенова
Ex-Data Analyst в Tinkoff Bank
Middle Data Scientist в Лаборатории машинного обучения Альфа-Банка
3+ года опыта в Machine Learning
Kaggle Competition Master
Senior ML Engineer в Toptal
3+ года опыта в программировании и Machine Learning
Ex-ML Engineer в МегаМаркете
Senior Data Scientiest и Team Lead в SberData
5+ лет опыта в Data Science
Преподаватель, ментор и спикер конференций PHDays, OpenTalks
Ex-Middle AI Product Manager во ВКонтакте, еx-Product Manager в Dastocks Inc
5+ лет опыта в Data Science и консалтинге
Александра Корнеева
Руководитель продуктовой аналитики в МТС Банке
10+ лет опыта в аналитике данных
Старший преподаватель Факультета Компьютерных наук в НИУ ВШЭ
Джамиль Закиров
Аналитик-разработчик в Avito
3+ года опыта в Data Science и Machine Learning
Ex-Computer Vision Engineer
Демид Гаибов
Machine Learning Engineer в EyeQ Inc и технический директор в Picturino AI
5+ лет опыта в Machine Learning
Работал в Huawei Noah’s Ark Lab и Philips Innovation Labs
Олег Кожанов
Middle Data Scientist в Лаборатории машинного обучения в Альфа-Банке
2+ года опыта в Machine Learning
Преподаватель в МФТИ, спикер конференций Yandex Data Day и Data Fest
Director of Solution Engineering в Smaato
Ex-Amazon, Берлин
Ex-Senior Data Scientist в Microsoft и в QIWI
15+ лет опыта в разработке
Senior Data Scientist в ServiceNow
7+ лет опыта в Data Science
Marketing Data Scientist в CleverDATA
Преподаватель Machine Learning в НИУ ВШЭ
6+ лет опыта в Machine Learning

Программа нашего курса полностью соответствует требованиям работодателей в 2024 году

Добавили итоговый проект по А/В-тестированию, добавили рабочую тетрадь аналитика — май 2023
видеолекции, скринкасты, тренажеры
Формат:

Блок 1. Как учиться эффективно

Качественно совмещать работу, учёбу и личную жизнь
Узнаете, как устроен курс, и составите личный план обучения. Вы научитесь:
Эффективно работать с книгами и статьями
4 курса
1 рабочая тетрадь
Быстро разбираться в новой для себя теме

Блок 2. Введение в Data Science

Какими навыками и инструментами должен владеть специалист Data Science.
Вы поймете:
Как проектируют проекты в Data Science по методологии CRISP-DM
3 курса
1 раздатка
Что такое Data Science, искусственный интеллект и машинное обучение и как они связаны между собой

Блок 3. Основы программирования

Что такое множества
Вы изучите основные концепции программирования, которые применяются в разных языках. Вы поймете:
Что такое простые и сложные типы данных
7 курсов
Что такое логические операции
1 воркбук
Что такое цикл, рекурсия и функция

Блок 4. Работа с Linux

подключаться к удалённым серверам
Вы изучите основы работы с Linux, которые позволят вам управлять компьютером с помощью командной строки. Вы научитесь работать с Linux через командную оболочку Bash:
писать скрипты
5 курсов
редактировать папки и файлы
собирать, просматривать и фильтровать логи

Блок 5. Работа с Python

Вы изучите синтаксис Python и научитесь писать программы, чтобы работать с алгоритмами машинного обучения. Вы научитесь:
создавать функции и лямбда-функции и применять их
работать с разными типами данных
задавать условия, циклы и рекурсии
использовать модули и библиотеки
обрабатывать файлы
работать с лямбда-функциями, comprehensions, итераторами, генераторами
51 курс
68 задач в песочнице
использовать регулярные выражениям
5 воркбуков
обрабатывать исключения
программировать в объектно-ориентированной методологии
писать читаемый код

Блок 6. Теория вероятности и математическая статистика

Вы научитесь применять критерии для проверки статистических гипотез и познакомитесь с классическими статистическими тестами: Стьюдента, Манна-Уитни, Фишера, Колмагорова-Смирнова и Пирсона. Вы поймете:
Что такое случайные величины и дискретное распределение случайной величины
Что такое случайное событие, условная и полная вероятность события, — и как это рассчитать
Что такое генеральная совокупность и выборка
14 курсов
10 практических заданий
Как описывать набор данных с помощью статистики и оценивать параметры распределения
Как читать визуализации статистических данных, подбирать диаграммы под задачи и не ошибаться при визуализации статистических данных
Как применять статистические критерии
Открыть полную программу